login
A336700
Numbers k such that the odd part of (1+k) divides (1 + odd part of sigma(k)).
10
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 2943, 3775, 4095, 8191, 13311, 14335, 16383, 17407, 21951, 22527, 32767, 34335, 44031, 57855, 65535, 85375, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1562623, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 10059775, 16777215
OFFSET
1,2
COMMENTS
Numbers k for which A337194(k) = 1+A161942(k) is a multiple of A000265(1+k).
Conjecture: After 1, all terms are of the form 4u+3 (in A004767). If this could be proved, then it would refute at once the existence of both the odd perfect numbers and the quasiperfect numbers. Concentrating on the latter is probably easier, as it is known that all quasiperfect numbers must be odd squares, thus k is of the form 4u+1, in which case the condition given in A336701 that A000265(1+A000265(sigma(k))) must be equal to A000265(1+k) reduces to a simpler form, A000265(1+sigma(k)) = (1+k)/2, and as k = s^2, with s odd, so (s^2 + 1)/2 should divide 1+sigma(s^2). Does that condition allow any other solutions than s=1 ? See A337339.
LINKS
Paolo Cattaneo, Sui numeri quasiperfetti, Bollettino dell’Unione Matematica Italiana, Serie 3, Vol.6(1951), n.1, p. 59-62.
P. Hagis and G. L. Cohen, Some Results Concerning Quasiperfect Numbers, J. Austral. Math. Soc. Ser. A 33, 275-286, 1982.
V. Siva Rama Prasad and C. Sunitha, On quasiperfect numbers, Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 3, 73-78.
Eric Weisstein's World of Mathematics, Quasiperfect Number
MATHEMATICA
Block[{f}, f[n_] := n/2^IntegerExponent[n, 2]; Select[Range[2^20], Mod[f[1 + f[DivisorSigma[1, #]]], f[1 + #]] == 0 &] ] (* Michael De Vlieger, Aug 22 2020 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
isA336700(n) = !((1+A000265(sigma(n)))%A000265(1+n));
CROSSREFS
Subsequences: A000225, A336701 (terms where the quotient is a power of 2).
Sequence in context: A105755 A043764 A213248 * A097002 A060152 A126646
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 02 2020
STATUS
approved