login
A335106
Irregular triangle T(n,k) is the number of times that prime(k) is the greatest part in a partition of n into prime parts; Triangle T(n,k), n>=0, 1 <= k <= max(1,A000720(A335285(n))), read by rows.
4
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 0, 2, 3, 2, 1, 1, 1, 2, 3, 3, 1, 0, 3, 4, 3, 1, 1, 1, 2, 4, 4, 2, 1, 0, 3, 5, 5, 2, 1, 1, 1, 3, 5, 5, 3, 2, 0, 3, 6, 7, 3, 2, 1, 1, 1, 3, 7, 7, 4, 3, 1, 0, 4
OFFSET
0,20
COMMENTS
Let L(n) be the set of least part primes of all prime partitions of n, and let G(n) be corresponding set of greatest prime parts. All prime partitions, commencing with p in L(n) and terminating with q in G(n) can be shown as unique pathways on a partition tree of n; see link for details. |G(n)| = A000607(n).
EXAMPLE
A000607(10) = 5 and the prime partitions of 10 are: (2,2,2,2,2), (2,2,3,3), (2,3,5), (5,5) and (3,7). Thus G(10) = {2,3,5,5,7}, and consequently row 10 is [1,1,2,1]. In the table below, for n >= 2, 0 is used to indicate when prime(k) is not in G(n) and is less than the greatest member of G(n), otherwise the entry for prime(k) not in G(n) is left empty. For n >= 2 the sum of entries in the n-th row is |G(n)| = A000607(n). Triangle T(n,k) begins:
0;
0;
1;
0, 1;
1;
0, 1, 1;
1, 1;
0, 1, 1, 1;
1, 1, 1;
0, 2, 1, 1;
1, 1, 2, 1;
0, 2, 2, 1, 1;
1, 2, 2, 2;
0, 2, 3, 2, 1, 1;
1, 2, 3, 3, 1;
0, 3, 4, 3, 1, 1;
1, 2, 4, 4, 2, 1;
0, 3, 5, 5, 2, 1, 1;
...
MATHEMATICA
Flatten@ Block[{nn = 22, t}, t = Block[{s = {Prime@ PrimePi@ nn}}, KeySort@ Merge[#, Identity] &@ Join[{0 -> {}, 1 -> {}}, Reap[Do[If[# <= nn, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 2, s = DeleteCases[s, 2]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1] ] ] &@Total[s], {i, Infinity}]][[-1, -1]] ] ]; Array[Function[p, If[! IntegerQ@ First@ p, {0}, Array[Count[p, Prime@ #] &, PrimePi@ Max@ p]]]@ Map[Max, t[[#]]] &, Max@ Keys@ t]] (* Michael De Vlieger, May 23 2020 *)
row[0]={0}; row[k_] := Join[If[OddQ@k, {0}, {}], Last /@ Tally@ Sort[ First /@ IntegerPartitions[k, All, Prime@ Range@ PrimePi@ k]]]; Join @@ Array[row, 20, 0] (* Giovanni Resta, May 31 2020 *)
CROSSREFS
Row sums gives A000607 for n > 1. Length of n-th row is A000720(A335285(n)) for n >1.
Number of partition of n in the first k primes: A059841 (k = 1), A103221 (k = 2), A025795 (k = 3), A029144 (k = 4), A140952 (k = 5), A140953 (k = 6).
Sequence in context: A016024 A238988 A261013 * A093518 A128184 A373244
KEYWORD
nonn,easy,tabf
EXTENSIONS
More terms from Giovanni Resta, May 31 2020
STATUS
approved