login
A093518
Number of ways of representing n as exactly 2 generalized pentagonal numbers.
4
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 1, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 2, 2, 2, 0, 1, 1, 0, 2, 1, 0, 1, 1, 3, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 0, 2, 0, 0, 1, 2, 1, 2, 1, 0, 2, 0, 3, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 1, 4, 1, 1, 0, 1, 2, 0, 2, 1, 1, 2, 1
OFFSET
0,3
EXAMPLE
a(7)=2 as we have 7+0=5+2
PROG
(PARI) { v=vector(101); v[1]=0; for (i=1, 50, v[2*i]=i*(3*i-1)/2; v[2*i+1]=i*(3*i+1)/2); x=vector(500); for (a=1, 50, for (b=a, 50, if (v[a]+v[b]<500, x[v[a]+v[b]+1]++))); x }
CROSSREFS
Cf. A001318 (generalized pentagonal numbers), A002107 (expansion of Product (1-x^k)^2, k=1..inf.), A093519 (A093518(n)=0).
Sequence in context: A238988 A261013 A335106 * A128184 A373244 A025450
KEYWORD
nonn
AUTHOR
Jon Perry, Mar 29 2004
STATUS
approved