The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333365 T(n,k) is the number of times that prime(k) is the least part in a partition of n into prime parts; triangle T(n,k), n >= 0, 1 <= k <= max(1,A000720(A331634(n))), read by rows. 5
 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 2, 1, 3, 1, 3, 1, 1, 4, 1, 0, 0, 1, 5, 1, 1, 6, 2, 0, 0, 0, 1, 7, 2, 0, 1, 9, 2, 1, 10, 3, 1, 12, 3, 1, 0, 0, 0, 1, 14, 3, 1, 1, 17, 4, 1, 0, 0, 0, 0, 1, 19, 5, 1, 1, 23, 5, 1, 1, 26, 6, 2, 0, 1, 30, 7, 2, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS Alois P. Heinz, Rows n = 0..1000, flattened FORMULA T(n,pi(n)) = A010051(n) for n > 1. T(p,pi(p)) = 1 if p is prime. T(prime(k),k) = 1 for k >= 1. Recursion: T(n,k) = Sum_{q=k..pi(n-p)} T(n-p, q) with p := prime(k) and T(n,k) = 0 if n < p, or 1 if n = p. - David James Sycamore, Mar 28 2020 EXAMPLE In the A000607(11) = 6 partitions of 11 into prime parts, (11), 335, 227, 2225, 2333, 22223 the least parts are 11 = prime(5) (once), 3 = prime(2)(once), and 2 = prime(1) (four times), whereas 5 and 7 (prime(3) and prime(4)) do not occur. Thus row 11 is [4,1,0,0,1]. Triangle T(n,k) begins:    0    ;    0    ;    1    ;    0, 1    ;    1       ;    1, 0, 1    ;    1, 1       ;    2, 0, 0, 1    ;    2, 1          ;    3, 1          ;    3, 1, 1       ;    4, 1, 0, 0, 1    ;    5, 1, 1          ;    6, 2, 0, 0, 0, 1    ;    7, 2, 0, 1          ;    9, 2, 1             ;   10, 3, 1             ;   12, 3, 1, 0, 0, 0, 1    ;   14, 3, 1, 1             ;   17, 4, 1, 0, 0, 0, 0, 1    ;   19, 5, 1, 1                ;   ... MAPLE b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q->       add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p))))     end: T:= proc(n) option remember; (p-> seq(`if`(isprime(i),       coeff(p, x, i), [][]), i=2..max(2, degree(p))))(b(n, 2, x))     end: seq(T(n), n=0..23); CROSSREFS Columns k=1-2 give: A000607(n-2) for n>1, A099773(n-3) for n>2. Row sums give A000607 for n>0. Length of n-th row is A000720(A331634(n)) for n>1. Indices of rows without 1's: A330433. Cf. A000040, A000720, A010051, A333129, A333238, A333259. Sequence in context: A292598 A079113 A144874 * A303065 A325406 A257900 Adjacent sequences:  A333362 A333363 A333364 * A333366 A333367 A333368 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Mar 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:04 EDT 2020. Contains 334756 sequences. (Running on oeis4.)