login
A334162
a(0) = 1; thereafter a(n) = exp(-1/n) * Sum_{k>=0} (n*k + 1)^n / (n^k * k!).
4
1, 2, 6, 35, 352, 5307, 111592, 3117900, 111259904, 4912490375, 261954304224, 16560019685937, 1222893826048000, 104189533522270666, 10132262911996769408, 1114216450970154278543, 137427598621356912082944, 18877351974681584403701519, 2869969478954093766868948480
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^k / Product_{j=1..k} (1 - n*j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + (exp(n*x) - 1) / n), for n > 0.
a(n) = A334165(n,n).
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x) Sum[(x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! SeriesCoefficient[Exp[x + (Exp[n x] - 1)/n], {x, 0, n}], {n, 1, 18}]]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 16 2020
STATUS
approved