login
A334160
Even numbers with a Goldbach partition (p,q), p < q, such that p and q can be written as the sum of two primes.
0
12, 18, 20, 24, 26, 32, 36, 38, 44, 48, 50, 56, 62, 66, 68, 74, 78, 80, 86, 92, 104, 108, 110, 114, 116, 122, 128, 134, 140, 144, 146, 152, 156, 158, 164, 170, 176, 182, 186, 188, 194, 198, 200, 204, 206, 212, 218, 224, 230, 234, 236, 242, 246, 248, 254, 260, 266
OFFSET
1,1
EXAMPLE
12 is in the sequence since 12 = 7 + 5 (distinct primes), 7 = 5 + 2 (both prime) and 5 = 3 + 2 (both prime).
18 is in the sequence since 18 = 13 + 5 (distinct primes), 13 = 11 + 2 (both prime) and 5 = 3 + 2 (both prime).
MATHEMATICA
Table[If[Sum[(PrimePi[i - 2] - PrimePi[i - 3]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {i, n - 1}] > 0, 2 n, {}], {n, 150}] // Flatten
CROSSREFS
Sequence in context: A025491 A091196 A319229 * A271345 A007624 A036456
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 16 2020
STATUS
approved