login
A333360
Decimal expansion of Sum_{n>=1} 1/z(n)^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
10
0, 0, 0, 7, 2, 9, 5, 4, 8, 2, 7, 2, 7, 0, 9, 7, 0, 4, 2, 1, 5, 8, 7, 5, 5, 1, 8, 5, 6, 9, 0, 9, 3, 9, 7, 0, 5, 0, 3, 3, 5, 1, 5, 0, 5, 7, 0, 3, 5, 5, 4, 2, 3, 7, 3, 5, 8, 9, 6, 5, 2, 7, 4, 4, 6, 6, 6, 1, 2, 3, 0, 2, 4, 4, 7, 1, 3, 2, 9, 1, 2, 8, 7, 8, 3, 2, 5, 6, 3, 9, 6, 7, 1, 7, 6, 2, 8, 3, 8, 4, 6, 5, 6, 7, 0, 2, 4, 1, 4, 3, 5, 8, 5, 2, 4
OFFSET
0,4
COMMENTS
a(1)-a(7) published by André Voros in 2001.
a(8)-a(20) computed by David Platt, Mar 15 2020.
a(21)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(350) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis alghorhitm of Juan Arias de Reyna.
a(351)-a(495) computed by Juan Arias de Reyna, using his implementation in mpmath from 2010, documented in his paper from 2020 (see link).
b-file on basis data from email Aug 16 2022 of Juan Arias Reyna to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; this sequence.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.
LINKS
Artur Kawalec, The inverse Riemann zeta function, arxiv:2106.06915 [math.NT], 2021, p. 38 formula (146).
Juan Arias de Reyna, Computation of the secondary zeta function, arxiv:2006.04869 [math.NT], 2020.
André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p. 25 Table 2.
André Voros, Zeta functions for the Riemann zeros, 2001(2008) p. 20 Table 1.
André Voros, Zeta functions for the Riemann zeros, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, pp. 665-699.
FORMULA
No explicit formula is known (Andre Voros, personal communication to Artur Jasinski, Mar 09 2020).
EXAMPLE
0.00072954827270970421...
PROG
(Python)
from mpmath import *
mp.dps = 90
nprint(secondzeta(3), 78)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Mar 16 2020
STATUS
approved