login
A333361
Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.
5
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
OFFSET
0,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (antidiagonals 0..50)
FORMULA
T(n,k) = A052170(n) for k >= 2*n.
EXAMPLE
==================================================
n\k | 0 1 2 3 4 5 6 7 8
----+---------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 0 0 1 1 1 1 1 1 1 ...
2 | 0 0 2 5 6 6 6 6 6 ...
3 | 0 0 2 10 20 23 24 24 24 ...
4 | 0 0 3 24 69 110 126 129 130 ...
5 | 0 0 3 42 196 427 603 668 684 ...
6 | 0 0 4 83 554 1681 2983 3811 4116 ...
7 | 0 0 4 132 1368 5881 13681 20935 24979 ...
8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
...
PROG
(PARI) \\ here G(k, x) gives column k as rational function.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n, ]))}
CROSSREFS
Columns k=0..4 are A000007, A000007, A008619, A037240, A050930.
Sequence in context: A190164 A253938 A131488 * A363665 A308183 A346632
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 16 2020
STATUS
approved