The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335826 Decimal expansion of Sum_{n>=1} 1/z(n)^6 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function. 5
 0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 7, 3, 9, 3, 1, 4, 0, 0, 9, 7, 3, 2, 7, 9, 6, 9, 5, 3, 8, 1, 5, 5, 6, 0, 9, 4, 8, 2, 0, 9, 0, 7, 0, 3, 6, 8, 8, 3, 0, 0, 8, 5, 0, 9, 0, 9, 8, 1, 1, 8, 7, 1, 5, 9, 9, 9, 3, 6, 4, 2, 1, 7, 9, 0, 5, 3, 9, 4, 6, 3, 1, 6, 8, 9, 6, 4, 0, 8, 1, 9, 5, 5, 0, 6, 7, 4, 2, 0, 4, 6, 8, 3, 8, 8, 8, 3, 4, 2, 3, 0, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Sum_{m>=1} 1/z(m) is a divergent series; see A332614. Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645. Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360. Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815. Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814. Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760. Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275. Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276. LINKS André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p.25 Table 2. André Voros, Zeta functions for the Riemann zeros, 2001(2008) p.20 Table 1. André Voros, Zeta functions for the Riemann zeros, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, p. 665-699. André Voros, Zeta functions over Zeros of the Zeta functions, 2010, p. 153. FORMULA Universal formula for Sum_{n>=1} 1/z(n)^(2m) published in Voros 2002-2003 p. 22 (see Mathematica procedure below). EXAMPLE 0.000000144173931400973279695381556.... MATHEMATICA m = 3; Join[{0, 0, 0, 0, 0, 0}, RealDigits[N[((-1)^m (2^(2 m) - ((2^(2 m) - 1) Zeta[2 m] + (Zeta[2 m, 1/4] - Zeta[2 m, 3/4])/2^(2 m))/4 - (D[Log[Zeta[x]], {x, 2 m}] /. x -> 1/2)/(2 (2 m - 1)!) )), 105]][[1]]] CROSSREFS Cf. A013629, A074760, A104539, A104540, A104541, A104542, A245275, A245276, A306339, A306340, A306341, A332645, A333360, A335814, A335815. Sequence in context: A021878 A247252 A016495 * A337191 A341863 A047213 Adjacent sequences: A335823 A335824 A335825 * A335827 A335828 A335829 KEYWORD nonn AUTHOR Artur Jasinski, Jun 25 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:17 EST 2022. Contains 358421 sequences. (Running on oeis4.)