OFFSET
0,1
LINKS
E. Bombieri and J. C. Lagarias, Complements to Li's Criterion for the Riemann Hypothesis, J. Number Th. 77(2) (1999), 274-287.
M. W. Coffey, Relations and positivity results for derivatives of the Riemann xi function, J. Comput. Appl. Math. 166(2) (2004), 525-534.
Xian-Jin Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Th. 65(2) (1997), 325-333.
Eric Weisstein's World of Mathematics, Li's Criterion.
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
Wikipedia, Li's criterion.
FORMULA
lambda(5) = 5*Pi^2/4 + 5*Pi^4/96 - 5*log(4)/2 - 5*log(Pi)/2 + 5*gamma/2 - 10*gamma^2 + 10*gamma^3 - 5*gamma^4+gamma^5 - 20*gamma(1) + 30*gamma*gamma(1) - 20*gamma^2*gamma(1) + 5*gamma^3*gamma(1) - 10*gamma(1)^2 + 5*gamma*gamma(1)^2 + 15*gamma(2) - 10*gamma*gamma(2) + 5/2*gamma^2*gamma(2) + 5/2*gamma(1)*gamma(2) - 10*gamma(3)/3 + 5/6*gamma*gamma(3) + 5*gamma(4)/24 - 35*zeta(3)/4 - 31*zeta(5)/32+1. - Jean-François Alcover, Jul 02 2014
EXAMPLE
0.575542714...
MATHEMATICA
lambda[n_] := Limit[D[s^(n - 1)*Log[xi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[5], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 5 e/2 - 10 e^2 + 10 e^3 - 5 e^4 + e^5 + 5 Pi^2/4 + (5 Pi^4)/96 - 20 g[1] + 30 e g[1] - 20 e^2 g[1] + 5 e^3 g[1] - 10 g[1]^2 + 5 e g[1]^2 + 15 g[2] - 10 e g[2] + 5/2 e^2 g[2] + 5/2 g[1] g[2] - 10 g[3]/3 + 5/6 e g[3] + 5 g[4]/24 - Log[32] - 5 Log[Pi]/2 - 35 Zeta[3]/4 - 31 Zeta[5]/32], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Mar 13 2005
STATUS
approved