|
|
A331424
|
|
Prime numbers p such that p^2 divides 31^(p-1) - 1.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Richard Fischer, Fermatquotienten von 2 bis 1052, Dec 19 2019.
Wikipedia, Wieferich prime
|
|
PROG
|
(PARI) forprime(p=2, 1e8, if(Mod(31, p^2)^(p-1)==1, print1(p", ")))
|
|
CROSSREFS
|
Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), this sequence (b=31), A331426 (b=37), A331427 (b=41).
Cf. A039951.
Sequence in context: A113034 A267798 A201704 * A052385 A093947 A222137
Adjacent sequences: A331421 A331422 A331423 * A331425 A331426 A331427
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Seiichi Manyama, Jan 16 2020
|
|
STATUS
|
approved
|
|
|
|