The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039951 Smallest prime p such that p^2 divides n^(p-1) - 1. 36
 2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n^k) <= a(n) for any n,k>1. a(n) is currently unknown for n = {47, 72, 186, 187, 200, 203, 222, 231, 304, 311, 335, 347, 355, 435, 454, 542, 546, 554, 610, 639, 662, 760, 772, 798, 808, 812, 858, 860, 871, 983, 986, ...}. a(47) > 4.9*10^13, a(72) > 2.1*10^13 (see Fischer's tables). For all nonnegative integers n and k, a(n^(n^k)) = a(n) (see Puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {8, 10, 19, 26, 28, 35}. - Farideh Firoozbakht and Jahangeer Kholdi, Nov 01 2014 LINKS C. K. Caldwell, The Prime Glossary, Fermat quotient. Richard Fischer, Fermat quotients B^(P-1) == 1 (mod P^2) W. Keller and J. Richstein, Fermat quotients q_p(a) that are divisible by p. Carlos Rivera, Puzzle 762 R. G. Wilson v, Table of n, a(n) for n=1..1000 (with missing terms) FORMULA a(4k+1) = 2. a(n) = A096082(n) for all n > 1 that are not of the form 4k+1. (Note that A096082 begins with n = 2.) MATHEMATICA Table[p = 2; While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p, {n, 33}] (* Michael De Vlieger, Nov 24 2016 *) f[n_] := Block[{p = 2}, While[ PowerMod[n, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 33] (* Robert G. Wilson v, Jul 18 2018 *) PROG (PARI) for(n=1, 20, forprime(p=2, 1e9, if(Mod(n, p^2)^(p-1)==1), print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jul 24 2014 CROSSREFS Cf. A001220, A045616, A096082, A014127, A123692, A123693, A174422. Sequence in context: A324590 A321633 A244550 * A247072 A282293 A252358 Adjacent sequences:  A039948 A039949 A039950 * A039952 A039953 A039954 KEYWORD nonn,more,hard AUTHOR EXTENSIONS a(34)-a(46) from Helmut Richter (richter(AT)lrz.de), May 17 2004 Entry revised by N. J. A. Sloane, Nov 30 2006 Edited by Max Alekseyev, Oct 06, Oct 09 2009 Second formula corrected and explained by Jonathan Sondow, Jun 17-18 2010 Edited and updated by Max Alekseyev, Jan 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 07:45 EST 2020. Contains 332199 sequences. (Running on oeis4.)