login
A324369
Product of all primes p dividing n such that the sum of the base p digits of n is at least p, or 1 if no such prime.
15
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 15, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 1, 5, 6, 1, 2, 3, 10, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 10, 7, 2, 3, 2, 5, 6, 1
OFFSET
1,6
COMMENTS
a(n) = n iff n divides denominator(Bernoulli_n(x) - Bernoulli_n) (see A195441).
a(n) = n iff n = 1 or n is in A324315.
a(n) = n if n is a Carmichael number (A002997).
See the section on Bernoulli polynomials in Kellner and Sondow 2019.
LINKS
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a(n) * A324371(n) = A007947(n) = radical(n).
a(n) * A324370(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).
a(n) * A324370(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).
EXAMPLE
6 = 2 * 3, and 6 = 110_2 in base 2 with 1+1+0 >= 2, but 6 = 20_3 in base 3 with 2+0 = 2 < 3, so a(6) = 2.
MAPLE
g:= proc(n, p) convert(convert(n, base, p), `+`) >= p end proc:
f:= proc(n) local p;
convert(select(p -> g(n, p), numtheory:-factorset(n)), `*`)
end proc:
map(f, [$1..100]); # Robert Israel, Feb 28 2019
MATHEMATICA
SD[n_, p_] := If[n < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
DD1[n_] := Times @@ Select[LP[n], SD[n, #] >= # &];
Table[DD1[n], {n, 1, 100}]
PROG
(Python)
from math import prod
from sympy.ntheory import digits
from sympy import primefactors as pf
def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) >= p)
print([a(n) for n in range(1, 98)]) # Michael S. Branicky, Jul 03 2022
KEYWORD
nonn,base,look
AUTHOR
STATUS
approved