login
A324370
Product of all primes p not dividing n such that the sum of the base-p digits of n is at least p, or 1 if no such prime exists.
27
1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 6, 1, 210, 15, 2, 3, 30, 5, 210, 21, 110, 15, 30, 5, 546, 21, 14, 1, 30, 1, 462, 231, 1190, 105, 6, 1, 51870, 1365, 70, 21, 2310, 55, 2310, 105, 322, 105, 210, 35, 6630, 663, 286, 33, 330, 55, 798, 57, 290, 15, 30, 1, 930930, 15015, 1430, 2145, 1122, 85, 82110, 2415, 70, 3, 330, 55, 21111090, 285285
OFFSET
1,3
COMMENTS
The product is finite, as the sum of the base-p digits of n is n if p > n.
a(198) = 2465 is the only term below 10^6 that is a Carmichael number (A002997).
It appears that a(n)=1 if and only if n is in A094960. - Robert Israel, Mar 30 2020
It turns out that a(n) equals the denominator of the first derivative of the Bernoulli polynomial B(n,x). So a(n)=1 if and only if n is in A094960, also impyling that n+1 is prime. A324370 is also involved in such formulas regarding higher derivatives. See Kellner 2023. - Bernd C. Kellner, Oct 12 2023
LINKS
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a(n) * A324369(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).
a(n) * A324369(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).
a(n+1) = A195441(n)/A324369(n+1) = A144845(n)/A007947(n+1) = A318256(n). Essentially the same as A318256. - Peter Luschny, Mar 05 2019
From Bernd C. Kellner, Oct 12 2023: (Start)
a(n) = denominator(Bernoulli_n(x)').
k-th derivative: let (n)_m be the falling factorial.
For n > k, a(n-k+1)/gcd(a(n-k+1), (n)_{k-1}) = denominator(Bernoulli_n(x)^(k)). Otherwise, the denominator equals 1. (End)
EXAMPLE
For p = 2, 3, and 5, the sum of the base p digits of 7 is 1+1+1 = 3 >= 2, 2+1 = 3 >= 3, and 1+2 = 3 < 5, respectively, so a(7) = 2*3 = 6.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N, 1):
p:= 1:
for iter from 1 do
p:= nextprime(p);
if p >= N then break fi;
for n from p+1 to N do
if n mod p <> 0 and convert(convert(n, base, p), `+`)>= p then
V[n]:= V[n]*p
fi
od od:
convert(V, list); # Robert Israel, Mar 30 2020
# Alternatively, note that this formula is suggesting offset 0 and a(0) = 1:
seq(denom(diff(bernoulli(n, x), x)), n = 1..51); # Peter Luschny, Oct 13 2023
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &];
Table[DD2[n], {n, 1, 100}]
(* From Bernd C. Kellner, Oct 12 2023 (Start) *)
(* Denominator of first derivative of BP *)
k = 1; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}]
(* End *)
PROG
(Python)
from math import prod
from sympy.ntheory import digits
from sympy import primefactors, primerange
def a(n):
nonpf = set(primerange(1, n+1)) - set(primefactors(n))
return prod(p for p in nonpf if sum(digits(n, p)[1:]) >= p)
print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 03 2022
KEYWORD
nonn,base
AUTHOR
STATUS
approved