OFFSET
1,3
COMMENTS
The product is finite, as the sum of the base-p digits of n is n if p > n.
a(198) = 2465 is the only term below 10^6 that is a Carmichael number (A002997).
It appears that a(n)=1 if and only if n is in A094960. - Robert Israel, Mar 30 2020
It turns out that a(n) equals the denominator of the first derivative of the Bernoulli polynomial B(n,x). So a(n)=1 if and only if n is in A094960, also impyling that n+1 is prime. A324370 is also involved in such formulas regarding higher derivatives. See Kellner 2023. - Bernd C. Kellner, Oct 12 2023
LINKS
Robert Israel, Table of n, a(n) for n = 1..5000
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a(n+1) = A195441(n)/A324369(n+1) = A144845(n)/A007947(n+1) = A318256(n). Essentially the same as A318256. - Peter Luschny, Mar 05 2019
From Bernd C. Kellner, Oct 12 2023: (Start)
a(n) = denominator(Bernoulli_n(x)').
k-th derivative: let (n)_m be the falling factorial.
For n > k, a(n-k+1)/gcd(a(n-k+1), (n)_{k-1}) = denominator(Bernoulli_n(x)^(k)). Otherwise, the denominator equals 1. (End)
EXAMPLE
For p = 2, 3, and 5, the sum of the base p digits of 7 is 1+1+1 = 3 >= 2, 2+1 = 3 >= 3, and 1+2 = 3 < 5, respectively, so a(7) = 2*3 = 6.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N, 1):
p:= 1:
for iter from 1 do
p:= nextprime(p);
if p >= N then break fi;
for n from p+1 to N do
if n mod p <> 0 and convert(convert(n, base, p), `+`)>= p then
V[n]:= V[n]*p
fi
od od:
convert(V, list); # Robert Israel, Mar 30 2020
# Alternatively, note that this formula is suggesting offset 0 and a(0) = 1:
seq(denom(diff(bernoulli(n, x), x)), n = 1..51); # Peter Luschny, Oct 13 2023
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &];
Table[DD2[n], {n, 1, 100}]
(* From Bernd C. Kellner, Oct 12 2023 (Start) *)
(* Denominator of first derivative of BP *)
k = 1; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}]
(* End *)
PROG
(Python)
from math import prod
from sympy.ntheory import digits
from sympy import primefactors, primerange
def a(n):
nonpf = set(primerange(1, n+1)) - set(primefactors(n))
return prod(p for p in nonpf if sum(digits(n, p)[1:]) >= p)
print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 03 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernd C. Kellner and Jonathan Sondow, Feb 24 2019
STATUS
approved