login
A330754
Number of values of k, 1 <= k <= n, with A330691(k) = A330691(n), where A330691(n) = gcd(n, A309639(n)).
2
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 3, 2, 4, 3, 1, 2, 3, 2, 1, 5, 1, 4, 4, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 3, 3, 2, 1, 6, 1, 2, 5, 1, 5, 6, 1, 4, 6, 5, 1, 6, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 7, 5, 2, 3, 8, 1, 7, 7, 3, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 8
OFFSET
1,6
COMMENTS
Ordinal transform of A330691.
LINKS
MATHEMATICA
A309639[n_] := For[k = 1, True, k++, If[Divisible[Denominator[ HarmonicNumber[k]], n], Return[k]]];
A330691[n_] := GCD[n, A309639[n]];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A330691[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 11 2022 *)
PROG
(PARI)
A330691(n) = gcd(n, A309639(n));
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
v330754 = ordinal_transform(vector(up_to, n, A330691(n)));
A330754(n) = v330754[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2019
STATUS
approved