

A144845


Least number k such that all coefficients of k*B(n,x), the nth Bernoulli polynomial, are integers.


11



1, 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, 210, 2310, 330, 690, 30, 2730, 546, 42, 14, 870, 30, 14322, 462, 39270, 3570, 210, 6, 1919190, 51870, 2730, 210, 94710, 2310, 99330, 2310, 4830, 4830, 9870, 210, 46410, 6630, 14586, 858
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The lcm of the terms in row n of A053383. It appears that the Bernoulli polynomial B(n,x) is irreducible for all even n.
This sequence appears in a paper of Bazsó & Mező who use this sequence to give necessary and sufficient condition for power sums to be integer polynomials.  Istvan Mezo, Mar 20 2016
In "The denominators of power sums of arithmetic progressions" Corollary 1, we give a simple way to compute a(n) without using Bernoulli polynomials. Namely, a(n) equals (product of the primes dividing n+1) times (product of the primes p <= (n+1)/(2+(n+1 mod 2)) not dividing n+1 such that the sum of the basep digits of n+1 is at least p).  Bernd C. Kellner and Jonathan Sondow, May 15 2017


LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000
András Bazsó and István Mező, On the coefficients of power sums of arithmetic progressions, J. Number Th., 153 (2015), 117123.
Bernd C. Kellner and Jonathan Sondow, PowerSum Denominators, arXiv:1705.03857 [math.NT] 2017, to appear in Amer. Math. Monthly.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, arXiv:1705.05331 [math.NT], submitted 2017.
Eric W. Weisstein, The World of Mathematics: Bernoulli Polynomial


MAPLE

seq(denom(bernoulli(i, x)), i=0..51); # Peter Luschny, Jun 16 2012


MATHEMATICA

Join[{1}, Table[1/FactorTerms[BernoulliB[n, x], x][[1]], {n, 100}]]


CROSSREFS

Cf. A027642, A064538, A144845, A195441, A286515, A286516, A286517.
Sequence in context: A141498 A284004 A225481 * A200563 A284577 A122018
Adjacent sequences: A144842 A144843 A144844 * A144846 A144847 A144848


KEYWORD

nonn


AUTHOR

T. D. Noe, Sep 22 2008


STATUS

approved



