OFFSET
0,2
COMMENTS
If (x, y) and (x', y') are adjacent points on the trajectory of the map then for the boustrophedonic Rosenberg-Strong function max(|x - x'|, |y - y'|) is always 1 whereas for the Rosenberg-Strong function this quantity can become arbitrarily large. In this sense the boustrophedonic variant is continuous in contrast to the original Rosenberg-Strong function.
REFERENCES
A. L. Rosenberg, H. R. Strong, Addressing arrays by shells, IBM Technical Disclosure Bulletin, vol 14(10), 1972, p. 3026-3028.
LINKS
Georg Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal für die reine und angewandte Mathematik 84 (1878), 242-258.
Steven Pigeon, Mœud deux, 2018.
A. L. Rosenberg, Allocating storage for extendible Arrays, J. ACM, vol 21(4), 1974, p. 652-670.
M. P. Szudzik, The Rosenberg-Strong Pairing Function", arXiv:1706.04129 [cs.DM], 2017.
MAPLE
MATHEMATICA
a[n_] := Module[{b, r, p1, p2, m}, b = Floor[Sqrt[n]]; r = n-b^2; {p1, p2} = If[r<b, {b, r}, {2b-r, b}]; m = If[p1>p2, p1, p2]; If[EvenQ[m], 2^p1 3^p2, 2^p2 3^p1]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Feb 14 2019, from Maple *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 21 2018
STATUS
approved