This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319512 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11. 1
 1, 3, 11, 42, 161, 616, 2352, 8967, 34153, 129997, 494606, 1881355, 7154980, 27208132, 103456689, 393367835, 1495638123, 5686513994, 21620239081, 82199944512, 312521862408, 1188195487255, 4517461948657, 17175149855885, 65298950120782, 248262786503683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let {X,Y,Z} be the roots of the cubic equation   t^3 + at^2 + bt + c = 0 where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3). This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (7,-14,7) FORMULA (X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7))); a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11. G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - Colin Barker, Dec 11 2018 MATHEMATICA LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* Amiram Eldar, Dec 10 2018 *) PROG (PARI) Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ Colin Barker, Dec 11 2018 CROSSREFS Cf. A215007, A215008, A215143, A215493, A215494, A215510, A217274, A217444, A094430. Sequence in context: A099489 A077830 A106460 * A279704 A301483 A059716 Adjacent sequences:  A319509 A319510 A319511 * A319513 A319514 A319515 KEYWORD nonn,easy AUTHOR Kai Wang, Dec 10 2018 EXTENSIONS More terms from Felix FrÃ¶hlich, Dec 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 04:04 EDT 2019. Contains 322329 sequences. (Running on oeis4.)