OFFSET
0,2
COMMENTS
Let {X,Y,Z} be the roots of the cubic equation
t^3 + at^2 + bt + c = 0
where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then
{p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...}
is an integer sequence with the recurrence relation:
p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-14,7)
FORMULA
(X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7)));
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.
G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - Colin Barker, Dec 11 2018
MATHEMATICA
LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* Amiram Eldar, Dec 10 2018 *)
CoefficientList[Series[(1-2x)^2/(1-7x+14x^2-7x^3), {x, 0, 30}], x] (* Harvey P. Dale, Oct 08 2023 *)
PROG
(PARI) Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ Colin Barker, Dec 11 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Dec 10 2018
EXTENSIONS
More terms from Felix Fröhlich, Dec 10 2018
STATUS
approved