This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318740 Decimal expansion of (sqrt((5 - sqrt(5))/2) - (sqrt(5) - 1)/2) * exp(Pi/5). 0
 1, 0, 4, 5, 0, 7, 7, 7, 1, 6, 1, 5, 8, 1, 3, 1, 5, 0, 8, 2, 4, 3, 0, 0, 4, 4, 2, 7, 8, 1, 6, 4, 0, 6, 6, 0, 5, 2, 3, 1, 2, 8, 9, 4, 6, 5, 6, 0, 8, 3, 7, 9, 9, 3, 1, 5, 1, 8, 0, 2, 9, 6, 1, 8, 0, 0, 6, 5, 2, 5, 2, 3, 7, 2, 2, 8, 3, 3, 8, 0, 4, 2, 3, 2, 1, 2, 2, 2, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The second part of Ramanujan's question 352 in the Journal of the Indian Mathematical Society (IV, 40) asked "Show that 1 / (1 - exp(-Pi) / (1 + exp(-2*Pi) / (1 - exp(-3*Pi) / (1 + ...)))) = (sqrt((5 - sqrt(5))/2) - (sqrt(5) - 1)/2) * exp(Pi/5)". Also stated in Ramanujan's first letter to G. H. Hardy in 1913. Corrected version from page 28 of Berndt, Choi and Kang, see links. LINKS B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q352, JIMS IV). B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q352, JIMS IV). EXAMPLE 1.045077716158131508243004427816406605231289465608379931518029618... PROG (PARI) (sqrt((1/2)*(5-sqrt(5)))-(sqrt(5)-1)/2)*exp(Pi/5) CROSSREFS Cf. A091667 (part 1 of question 352). Sequence in context: A192041 A132022 A319459 * A240160 A249860 A320162 Adjacent sequences:  A318737 A318738 A318739 * A318741 A318742 A318743 KEYWORD nonn,cons AUTHOR Hugo Pfoertner, Sep 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 20:16 EDT 2019. Contains 323426 sequences. (Running on oeis4.)