login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318740 Decimal expansion of (sqrt((5 - sqrt(5))/2) - (sqrt(5) - 1)/2) * exp(Pi/5). 0
1, 0, 4, 5, 0, 7, 7, 7, 1, 6, 1, 5, 8, 1, 3, 1, 5, 0, 8, 2, 4, 3, 0, 0, 4, 4, 2, 7, 8, 1, 6, 4, 0, 6, 6, 0, 5, 2, 3, 1, 2, 8, 9, 4, 6, 5, 6, 0, 8, 3, 7, 9, 9, 3, 1, 5, 1, 8, 0, 2, 9, 6, 1, 8, 0, 0, 6, 5, 2, 5, 2, 3, 7, 2, 2, 8, 3, 3, 8, 0, 4, 2, 3, 2, 1, 2, 2, 2, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The second part of Ramanujan's question 352 in the Journal of the Indian Mathematical Society (IV, 40) asked "Show that 1 / (1 - exp(-Pi) / (1 + exp(-2*Pi) / (1 - exp(-3*Pi) / (1 + ...)))) = (sqrt((5 - sqrt(5))/2) - (sqrt(5) - 1)/2) * exp(Pi/5)". Also stated in Ramanujan's first letter to G. H. Hardy in 1913. Corrected version from page 28 of Berndt, Choi and Kang, see links.

LINKS

Table of n, a(n) for n=1..90.

B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q352, JIMS IV).

B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q352, JIMS IV).

EXAMPLE

1.045077716158131508243004427816406605231289465608379931518029618...

PROG

(PARI) (sqrt((1/2)*(5-sqrt(5)))-(sqrt(5)-1)/2)*exp(Pi/5)

CROSSREFS

Cf. A091667 (part 1 of question 352).

Sequence in context: A192041 A132022 A319459 * A240160 A249860 A320162

Adjacent sequences:  A318737 A318738 A318739 * A318741 A318742 A318743

KEYWORD

nonn,cons

AUTHOR

Hugo Pfoertner, Sep 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 20:16 EDT 2019. Contains 323426 sequences. (Running on oeis4.)