login
A318737
Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new record, with d(n) = number of divisors of n (A000005).
5
1, 9, 25, 49, 85, 133, 169, 225, 445, 845, 973, 1125, 2205, 2209, 2469, 2829, 7929, 9429, 9945, 23569, 24073, 24645, 26145, 40425, 68153, 71289, 72413, 89517, 112233, 112245, 128973, 162405, 162409, 162429, 297073, 477489, 477493, 502713, 561253
OFFSET
1,2
LINKS
EXAMPLE
a(2) = 9, because s = d(1)-d(3)+d(5)-d(7)+d(9) = 1-2+2-2+3 = 2 exceeds d(1)=1, d(1)-d(3)=-1, d(1)-d(3)+d(5)=1, d(1)-d(3)+d(5)-d(7)=-1.
PROG
(PARI) s=0; smax=0; j=-1; forstep(k=1, 600000, 2, j=-j; s=s+j*numdiv(k); if(s>smax, smax=s; print1(k, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 05 2018
STATUS
approved