login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318738 Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new negative record, with d(n) = number of divisors of n (A000005). 5
3, 15, 39, 63, 99, 259, 319, 403, 675, 679, 943, 1615, 1779, 2919, 4899, 5775, 7399, 7407, 13475, 13479, 25635, 29835, 29839, 44955, 78463, 78475, 108927, 108931, 126819, 136959, 136975, 136983, 244875, 244879, 256355, 276675, 276687, 457275, 530139 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Hugo Pfoertner, Table of n, a(n) for n = 1..282

EXAMPLE

a(1) = 3, because s = d(1)-d(3) = 1-2 = -1 is the first negative record.

a(2) = 15, because s = d(1)-d(3)+d(5)-d(7)+d(9)-d(11)+d(13)-d(15) =

1-2+2-2+3-2+2-4 = -2 is the first sum less than -1.

PROG

(PARI) s=0; j=-1; smin=0; forstep(k=1, 600000, 2, j=-j; s=s+j*numdiv(k); if(s<smin, smin=s; print1(k, ", ")))

CROSSREFS

Cf. A000005, A099774, A318734, A318735, A318736, A318737.

Sequence in context: A176661 A117561 A065765 * A146853 A183476 A297621

Adjacent sequences:  A318735 A318736 A318737 * A318739 A318740 A318741

KEYWORD

nonn

AUTHOR

Hugo Pfoertner, Sep 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 04:06 EDT 2019. Contains 323377 sequences. (Running on oeis4.)