login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317640 The 7x+-1 function: a(n) = 7n+1 if n == +1 (mod 4), a(n) = 7n-1 if n == -1 (mod 4), otherwise a(n) = n/2. 4
0, 8, 1, 20, 2, 36, 3, 48, 4, 64, 5, 76, 6, 92, 7, 104, 8, 120, 9, 132, 10, 148, 11, 160, 12, 176, 13, 188, 14, 204, 15, 216, 16, 232, 17, 244, 18, 260, 19, 272, 20, 288, 21, 300, 22, 316, 23, 328, 24, 344, 25, 356, 26, 372, 27, 384, 28, 400, 29, 412, 30, 428, 31, 440, 32, 456, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The 7x+-1 problem is as follows. Start with any natural number n. If 4 divides n-1, multiply it by 7 and add 1; if 4 divides n+1, multiply it by 7 and subtract 1; otherwise divide it by 2. The 7x+-1 problem concerns the question whether we always reach 1.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

D. Barina, 7x+-1: Close Relative of Collatz Problem, arXiv:1807.00908 [math.NT], 2018.

K. Matthews, David Barina's 7x+1 conjecture.

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).

FORMULA

a(n) = a(a(2*n)).

From Colin Barker, Aug 03 2018: (Start)

G.f.: x*(8 + x + 12*x^2 + x^3 + 8*x^4) / ((1 - x)^2*(1 + x)^2*(1 + x^2)).

a(n) = a(n-2) + a(n-4) - a(n-6) for n>5.

(End)

EXAMPLE

a(3)=20 because 3 == -1 (mod 4), and thus 7*3 - 1 results in 20.

a(5)=36 because 5 == +1 (mod 4), and thus 7*5 + 1 results in 36.

MATHEMATICA

Array[Which[#2 == 1, 7 #1 + 1, #2 == 3, 7 #1 - 1, True, #1/2] & @@ {#, Mod[#, 4]} &, 67, 0] (* Michael De Vlieger, Aug 02 2018 *)

PROG

(C)

int a(int n) {

....switch(n%4) {

........case 1: return 7*n+1;

........case 3: return 7*n-1;

........default: return n/2;

....}

}

(PARI) a(n)={my(m=(n+2)%4-2); if(m%2, 7*n + m, n/2)} \\ Andrew Howroyd, Aug 02 2018

(PARI) concat(0, Vec(x*(8 + x + 12*x^2 + x^3 + 8*x^4) / ((1 - x)^2*(1 + x)^2*(1 + x^2)) + O(x^70))) \\ Colin Barker, Aug 03 2018

CROSSREFS

Cf. A006370.

Sequence in context: A209242 A103884 A103883 * A125235 A183892 A019432

Adjacent sequences:  A317637 A317638 A317639 * A317641 A317642 A317643

KEYWORD

nonn,easy

AUTHOR

David Barina, Aug 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 07:24 EDT 2019. Contains 324203 sequences. (Running on oeis4.)