login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377851
Smallest multiplier which can complete the square for n-polygonal numbers, together with a constant offset.
2
8, 1, 24, 8, 40, 3, 56, 16, 72, 5, 88, 24, 104, 7, 120, 32, 136, 9, 152, 40, 168, 11, 184, 48, 200, 13, 216, 56, 232, 15, 248, 64, 264, 17, 280, 72, 296, 19, 312, 80, 328, 21, 344, 88, 360, 23, 376, 96, 392, 25, 408, 104, 424, 27, 440, 112, 456, 29, 472
OFFSET
3,1
COMMENTS
This smallest multiplier is also the only multiplier that is relatively prime to the offset.
The n-polygonal numbers, indexed by x, are P(n,x) = (n-2)*(x-1)*x/2 + x = A139601(n-3,x).
S(x) = P(n,x)*a(n) + A181318(n-4) completes the square in that quadratic, ensuring S(x) is a square for all x.
FORMULA
a(n) = 8*(n-2)/gcd(n,4)^2. - Andrew Howroyd, Nov 10 2024
From Stefano Spezia, Nov 13 2024: (Start)
G.f.: x^3*(8 + x + 24*x^2 + 8*x^3 + 24*x^4 + x^5 + 8*x^6)/(1 - x^4)^2.
E.g.f.: (4 + 32*x + 6*cos(x) + 2*(16*x - 5)*cosh(x) + 3*x*sin(x) + (5*x - 64)*sinh(x))/4. (End)
EXAMPLE
For n=7, the heptagonal numbers are h(x) = x*(5*x-3)/2 and with multiplier a(7) = 40 and offset A181318(7-4) = 9 become 40*h(x)+9 = (10*x - 3)^2.
MATHEMATICA
Table[8*(n - 2)/GCD[n, 4]^2, {n, 3, 100}] (* Paolo Xausa, Dec 07 2024 *)
PROG
(PARI) a(n) = 8*(n-2)/gcd(n, 4)^2 \\ Andrew Howroyd, Nov 10 2024
CROSSREFS
Cf. A181318 (offsets).
Sequence in context: A317640 A125235 A183892 * A019432 A211796 A138505
KEYWORD
nonn,easy
AUTHOR
Jonathan Dushoff, Nov 09 2024
STATUS
approved