This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103884 Square array T(n,k) read by antidiagonals: coordination sequence for lattice C_n. 5
 1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 REFERENCES J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44. LINKS M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). FORMULA T(n, k) = Sum[i=1..2k, 2^i*C(n, i)*C(2k-1, i-1) ], T(n, 0)=1. G.f. of n-th row: Sum[i=0..n, C(2n, 2i)*x^i ]/(1-x)^n. EXAMPLE 1,8,16,24,32,40,48, 1,18,66,146,258,402,578, 1,32,192,608,1408,2720,4672, 1,50,450,1970,5890,14002,28610, 1,72,912,5336,20256,58728,142000, MATHEMATICA nmin = 2; nmax = 11; t[n_, 0] = 1; t[n_, k_] := 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk = Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *) CROSSREFS Rows include A022144, A010006, A019560, A019561, A019562, A019563, A019564, A035746, A035747, A035748, A035749, A035750-A035787. Columns include A001105, A035598, A035600, A035602, A035604, A035606. Main diagonal is in A103885. Sequence in context: A126000 A013615 A209242 * A103883 A125235 A183892 Adjacent sequences:  A103881 A103882 A103883 * A103885 A103886 A103887 KEYWORD nonn,tabl AUTHOR Ralf Stephan, Feb 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.