This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317641 Expansion of theta_3(q)*theta_3(q^10), where theta_3() is the Jacobi theta function. 1
 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 8, 0, 0, 4, 0, 0, 0, 0, 4, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of integer solutions to the equation x^2 + 10*y^2 = n. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) Eric Weisstein's World of Mathematics, Jacobi Theta Functions FORMULA G.f.: Product_{k>=1} (1 + x^(2*k-1))^2*(1 - x^(2*k))*(1 + x^(20*k-10))^2*(1 - x^(20*k)). EXAMPLE G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^10 + 4*q^11 + 4*q^14 + 2*q^16 + 4*q^19 + ... MATHEMATICA nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^10], {q, 0, nmax}], q] nmax = 100; CoefficientList[Series[QPochhammer[-q, -q] QPochhammer[-q^10, -q^10]/(QPochhammer[q, -q] QPochhammer[q^10, -q^10]), {q, 0, nmax}], q] CROSSREFS Cf. A000024, A020673, A033201, A033723, A216577, A216579, A258034. Sequence in context: A138811 A107494 A079205 * A107497 A000095 A258322 Adjacent sequences:  A317638 A317639 A317640 * A317642 A317643 A317644 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 19:44 EDT 2019. Contains 323597 sequences. (Running on oeis4.)