login
A317641
Expansion of theta_3(q)*theta_3(q^10), where theta_3() is the Jacobi theta function.
1
1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 8, 0, 0, 4, 0, 0, 0, 0, 4, 2
OFFSET
0,2
COMMENTS
Number of integer solutions to the equation x^2 + 10*y^2 = n.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2*(1 - x^(2*k))*(1 + x^(20*k-10))^2*(1 - x^(20*k)).
EXAMPLE
G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^10 + 4*q^11 + 4*q^14 + 2*q^16 + 4*q^19 + ...
MATHEMATICA
nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^10], {q, 0, nmax}], q]
nmax = 100; CoefficientList[Series[QPochhammer[-q, -q] QPochhammer[-q^10, -q^10]/(QPochhammer[q, -q] QPochhammer[q^10, -q^10]), {q, 0, nmax}], q]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 02 2018
STATUS
approved