The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317057 a(n) is the number of time-dependent assembly trees satisfying the connected gluing rule for a cycle on n vertices. 3
 1, 1, 4, 23, 166, 1437, 14512, 167491, 2174746, 31374953, 497909380, 8619976719, 161667969646, 3265326093109, 70663046421208, 1631123626335707, 40004637435452866, 1038860856732399105, 28476428717448349996 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that: 1) each internal node has at least two children, 2) there are leaves labeled (v, 0) for each vertex v in V, 3) the label on the root is (V, m) for 1 <= m <= n-1, 4) for each node (U, i) with i < m, U is the union of the {u} for the children (u, 0) of (U, i), 5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i < i', 6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V. A time-dependent assembly tree is said to satisfy the connected gluing rule if each internal vertex v of G, the graph induced by the vertices in the labels is connected. Essentially the same as A053525. - R. J. Mathar, Aug 20 2018 LINKS M. Bona and A. Vince, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012. A. Dougherty, N. Mayers, and R. Short, How to Build a Graph in n Days: Some Variants on Graph Assembly, arXiv preprint arXiv:1807.08079 [math.CO], 2018. FORMULA a(n) = 1 + Sum_{j=2..n-1} binomial(n, j)*a(j), a(1)=a(2)=1. E.g.f.: (x - x*e^x + e^x - 1)/(2 - e^x). MAPLE A317057 := proc(n)     option remember;     if n <=2 then         1;     else         1+add(binomial(n, j)*procname(j), j=2..n-1) ;     end if; end proc: seq(A317057(n), n=1..30) ; # R. J. Mathar, Aug 08 2018 MATHEMATICA Nest[Function[{a, n}, Append[a, 1 + Sum[Binomial[n, j] a[[j]], {j, 2, n - 1}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *) PROG (Sage) @cached_function def TimeDepenConCycle(n):     if (n==1):         return 1     elif (n==2):         return 1     else:         return sum([binomial(n, j)*TimeDepenConCycle(j) for j in range(2, n)])+1 print(', '.join(str(TimeDepenConCycle(i)) for i in range(1, 20))) (GAP) a:=[1, 1];; for n in [3..20] do a[n]:=1+Sum([2..n-1], j->Binomial(n, j)*a[j]); od; a; # Muniru A Asiru, Jul 25 2018 (PARI) lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = 1 + sum(j=2, n-1, binomial(n, j)*v[j]))); v; \\ Michel Marcus, Aug 08 2018 CROSSREFS Cf. A047781, A317058, A317059, A317060. Sequence in context: A111547 A171992 A158884 * A053525 A277382 A208676 Adjacent sequences:  A317054 A317055 A317056 * A317058 A317059 A317060 KEYWORD easy,nonn AUTHOR Nick Mayers, Robert Short, Aria Dougherty, Jul 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)