OFFSET
0,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
FORMULA
G.f. satisfies: x*A'(x) = A(x)*(1+x - A(x))/(A(x) - 1).
G.f.: A(x) = 1/G(-x) where G(x) is the g.f. of A088715.
G.f. satisfies: A(x/F(x)) = F(x) where F(x) is the g.f. of A158883.
G.f. satisfies: A(x*H(-x)) = H(-x) where H(x) is the g.f. of A088716.
G.f. satisfies: [x^n] 1/A(-x)^(n+2) = [x^(n+1)] 1/A(-x)^(n+2)/(n+2) = A088716(n+1).
a(n) ~ -(-1)^n * c * n! * n^2, where c = A238223 / exp(1) = 0.080179614624692622... - Vaclav Kotesovec, Nov 21 2017
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 4*x^3 - 23*x^4 + 166*x^5 - 1410*x^6 +...
d/dx x*A(x) = 1 + 2*x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 - 9870*x^6 +...
d/dx log(A(x)) = 1 - 3*x + 16*x^2 - 115*x^3 + 996*x^4 - 9870*x^5 +...
Coefficients in powers A(x)^-n begin:
A(x)^-1: (1),-1,2,-7,36,-240,1926,-17815,184916,...;
A(x)^-2: (1),(-2),5,-18,90,-580,4525,-40946,417822,...;
A(x)^-3: 1,(-3),(9),-34,168,-1053,7997,-70776,709614,...;
A(x)^-4: 1,-4,(14),(-56),277,-1700,12594,-109032,1073658,...;
A(x)^-5: 1,-5,20,(-85),(425),-2571,18630,-157860,1526330,...;
A(x)^-6: 1,-6,27,-122,(621),(-3726),26492,-219912,2087658,...;
A(x)^-7: 1,-7,35,-168,875,(-5236),(36652),-298446,2782080,...;
A(x)^-8: 1,-8,44,-224,1198,-7184,(49680),(-397440),3639333,...; ...
and A(x)^-1 (first row) is the g.f. of signed A088715.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^(#A-1))-Vec(Ser(A)^(#A)))[ #A]); Vec(Ser(A)^(n+1)/(n+1))[n+1]}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 30 2009
STATUS
approved