login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158882 G.f. A(x) satisfies: [x^n] A(x)^n = [x^n] A(x)^(n-1) for n>1 with A(0)=A'(0)=1. 5
1, 1, -1, 3, -13, 71, -461, 3447, -29093, 273343, -2829325, 31998903, -392743957, 5201061455, -73943424413, 1123596277863, -18176728317413, 311951144828863, -5661698774848621, 108355864447215063, -2181096921557783605 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

After initial term, equals signed A003319 (indecomposable permutations).

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n) = (2-n) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011

a(n) = (-1)^(n-1)*A003319(n) for n>=1.

G.f.: A(x) = 1/[Sum_{n>=0} (-1)^n*n!*x^n].

G.f. satisfies: [x^(n+1)] A(x)^n = (-1)^n*n*A075834(n+1) for n>=0.

From Sergei N. Gladkovskii, Jun 24 2012: (Start)

Let A(x) be the G.f., then

A(x) = 1 - x/U(0), when U(k) =  x - 1 + x*k + (k+2)*x/U(k+1); (continued fraction Euler's 1 kind, 1-step).

A(x) = 1/U(0), where U(k) =  1 - x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) - 1/U(k+1))); (continued fraction, Euler's 3rd kind, 3-step).

(End)

G.f.: U(0) where U(k)=  1 + x*(k+1)/(1 + x*(k+1)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012

G.f.: 2/(G(0) + 1) where G(k)= 1 - x*(k+1)/(1 - 1/(1 + 1/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 20 2012

G.f.: x*G(0) where G(k)=1/x + 2*k + 1 - (k+1)^2/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 08 2012

G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

EXAMPLE

G.f.: A(x) = 1 + x - x^2 + 3*x^3 - 13*x^4 + 71*x^5 - 461*x^6 +-...

1/A(x) = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 +...+ (-1)^n*n!*x^n +...

...

Coefficients of powers of g.f. A(x) begin:

A^1: 1,1,(-1),3,-13,71,-461,3447,-29093,273343,-2829325,...;

A^2: 1,2,(-1),(4),-19,110,-745,5752,-49775,476994,-5016069,...;

A^3: 1,3, 0, (4),(-21),129,-910,7242,-64155,626319,-6685548,...;

A^4: 1,4, 2, 4, (-21),(136),-996,8152,-73811,733244,-7938186,...;

A^5: 1,5, 5, 5, -20, (136),(-1030),8650,-79925,807055,-8854741,...;

A^6: 1,6, 9, 8, -18, 132, (-1030),(8856),-83385,855010,-9500385,...;

A^7: 1,7,14,14, -14, 126, -1008, (8856),(-84861),882805,-9927890,...;

A^8: 1,8,20,24, -6, 120, -972, 8712, (-84861),(894928),-10180120,...;

A^9: 1,9,27,39,9,117,-927,8469,-83772,(894928),(-10291986),...;

A^10:1,10,35,60,35,122,-875,8160,-81890,885620,(-10291986),...; ...

where coefficients [x^n] A(x)^n and [x^n] A(x)^(n-1) are

enclosed in parenthesis and equal (-1)^n*n*A075834(n+1):

[ -1,4,-21,136,-1030,8856,-84861,894928,-10291986,128165720,...];

compare to A075834:

[1,1,1,2,7,34,206,1476,12123,111866,1143554,12816572,...]

and also to the logarithmic derivative of A075834:

[1,1,4,21,136,1030,8856,84861,894928,10291986,128165720,...].

MATHEMATICA

b[0] = 0; b[n_] := b[n] = n!-Sum[k!*b[n-k], {k, 1, n-1}]; a[0] = 1; a[n_] := (-1)^(n+1)*b[n]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Mar 07 2014, from 2nd formula *)

PROG

(PARI) a(n)=polcoeff(1/sum(k=0, n, (-1)^k*k!*x^k +x*O(x^n)), n)

(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^(#A-2))-Vec(Ser(A)^(#A-1)))[ #A]); A[n+1]}

(Maxima)

G(n, k):=(if n=k then 1 else if k=1 then (-sum(binomial(n-1, k-1)*G(n, k), k, 2, n)) else sum(G(i+1, 1)*G(n-i-1, k-1), i, 0, n-k));

makelist(G(n, 1), n, 1, 10); /* Vladimir Kruchinin, Mar 07 2014 */

CROSSREFS

Cf. A003319, A075834, A159311, variant: A158883.

Sequence in context: A167894 A003319 * A233824 A192239 A192936 A000261

Adjacent sequences:  A158879 A158880 A158881 * A158883 A158884 A158885

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:24 EST 2016. Contains 278874 sequences.