This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158881 a(n) = (n*2^n + 1)^(n-1). 0
 1, 1, 9, 625, 274625, 671898241, 8458700490625, 520900360822838529, 151632993506657159886849, 203635581444958952230203985921, 1239028497632876493535705227172341761 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The g.f. is a special case (q=2) of the following identity. Let W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n! = LambertW(-x)/(-x), then Sum_{n>=0} (n*q^n+1)^(n-1)/q^(n^2)*x^n/n! = Sum_{n>=0} W(x/q^n)^n/q^(n^2)*x^n/n! where the radius of convergence is |x| <= q/e for q>=1. LINKS FORMULA G.f.: A(x) = Sum_{n>=0} (n*2^n + 1)^(n-1)/2^(n^2) * x^n/n! G.f.: A(x) = Sum_{n>=0} W(x/2^n)^n/2^(n^2) * x^n/n!, and a(n)/2^(n^2) is the coefficient of x^n/n! in W(x)^(1/2^n) where W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. Radius of convergence of series A(x) is |x| <= 2/e. EXAMPLE G.f.: A(x) = 1 + 3^0/2*x + 9^1/2^4*x^2/2! + 25^2/2^9*x^3/3! + 65^3/2^16*x^4/4! + 161^4/2^25*x^5/5! +... A(x) = 1 + W(x/2)/2*x + W(x/4)^2/2^4*x^2/2! + W(x/8)^3/2^9*x^3/3! +... where W(x) = LambertW(-x)/(-x) so that W(x) = exp(x*W(x)). Special values. A(1/2) = 1.367881486725746399880346284881720747435653310931858829... A(1/e) = 1.237164211886302867099485584025040050496738919299895839... A(2/e) = 2.027079144901937613098735287853530386549370956336296669... A(-2/e)= 0.733788551140988480682883862465033405661534959498406132... MATHEMATICA Table[(n*2^n+1)^(n-1), {n, 0, 10}] (* Harvey P. Dale, Jun 04 2015 *) PROG (PARI) a(n)=(n*2^n + 1)^(n-1) CROSSREFS Sequence in context: A171703 A085530 A188423 * A188394 A157597 A211611 Adjacent sequences:  A158878 A158879 A158880 * A158882 A158883 A158884 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 06:29 EDT 2018. Contains 316520 sequences. (Running on oeis4.)