OFFSET
0,3
FORMULA
E.g.f.: sqrt(5)/(sqrt(5) - 2*exp(x/2)*sinh(sqrt(5)*x/2)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Fibonacci(k) * a(n-k).
a(n) ~ n! * 5^((n+1)/2) * (exp(2*r) - 1) / ((sqrt(5) - 1 + (1 + sqrt(5))*exp(2*r)) * 2^n * r^(n+1)), where r = 0.7361181605960590527095268838693519750655284224... is the root of the equation exp(2*r) = 1 + sqrt(5)*exp(r*(1 - 1/sqrt(5))). - Vaclav Kotesovec, Jul 01 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Sqrt[5]/(Sqrt[5] - 2 Exp[x/2] Sinh[Sqrt[5] x/2]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Fibonacci[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 01 2019
STATUS
approved