The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331608 E.g.f.: exp(1 / (1 - sinh(x)) - 1). 5
 1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A006154(k) * a(n-k). a(n) ~ exp(1/(2^(3/2) * log(1 + sqrt(2))) - 3/4 + 2^(3/4) * sqrt(n) / sqrt(log(1 + sqrt(2))) - n) * n^(n - 1/4) / (2^(5/8) * log(1 + sqrt(2))^(n + 1/4)). - Vaclav Kotesovec, Jan 27 2020 MATHEMATICA nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]! A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}] CROSSREFS Cf. A003704, A003724, A006154, A075729, A331607, A331611. Sequence in context: A213628 A088716 A005189 * A331615 A317060 A308940 Adjacent sequences: A331605 A331606 A331607 * A331609 A331610 A331611 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:15 EST 2022. Contains 358512 sequences. (Running on oeis4.)