OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..474
Ira M. Gessel, Generating Functions and Enumeration of Sequences, Ph.D. thesis, MIT, 1977, p. 52.
Toufik Mansour and Mark Shattuck, A combinatorial proof of a result for permutation pairs, Central European Journal of Mathematics, 10 (2012), 797-806.
FORMULA
E.g.f.: sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)).
E.g.f.: (1 + Sum_{n>=1} (-1)^n F_n x^n/n!)^(-1), where F_n is the n-th Fibonacci number. - Ira M. Gessel, Jul 27 2014
a(n) ~ n! * sinh(r*sqrt(5)) / (2^n*r^(n+1)*(sqrt(5)*cosh(r*sqrt(5))-sinh(r*sqrt(5)))), where r = 0.68903745689226... is the root of the equation 1-exp(-2*sqrt(5)*r) = sqrt(5)*exp((1-sqrt(5))*r). - Vaclav Kotesovec, Sep 29 2013
EXAMPLE
a(4) = 7 because 2/134, 3/124, 4/123, 234/1, 134/2, 124/3 and 4/3/2/1 are the only permutations of [4] with no increasing runs of even length.
MAPLE
G:=sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)): Gser:=simplify(series(G, x=0, 25)): 1, seq(n!*coeff(Gser, x^n), n=1..24);
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, t,
add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
`if`(t=0, 0, add(b(u-j, o+j-1, 1), j=1..u)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 19 2013
MATHEMATICA
CoefficientList[Series[Sqrt[5]/(Sqrt[5]-2*E^(-x/2)*(E^(Sqrt[5]*x/2)/2 - E^(-Sqrt[5]*x/2)/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 29 2004
STATUS
approved