This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306486 Number of squares in the interval [e^(n-1), e^n). 2
 0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 58, 96, 159, 262, 431, 712, 1172, 1934, 3189, 5256, 8667, 14289, 23559, 38841, 64039, 105583, 174076, 287003, 473188, 780155, 1286258, 2120681, 3496412, 5764609, 9504233, 15669832, 25835185, 42595018, 70227313, 115785266 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The lower endpoint e^(n-1) is included; the upper endpoint is not included. The terms a(0) to a(8) coincide with the Fibonacci numbers. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4607 (first 501 terms from Alexei Kourbatov) FORMULA a(n) = ceiling(sqrt(exp(n))) - ceiling(sqrt(exp(n-1))). From Alois P. Heinz, Feb 19 2019: (Start) Lim_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774. a(n) = A005181(n+1) - A005181(n). (End) a(n) = (1-1/sqrt(e))*e^(n/2)+O(1) ~ 0.39346934...*e^(n/2) ~ A290506*e^(n/2). - Alexei Kourbatov, Feb 20 2019 EXAMPLE Between exp(2) and exp(3) there are two squares, namely, 9 and 16; therefore, a(3)=2. MAPLE a:= n-> (f-> f(n)-f(n-1))(i-> ceil(exp(i/2))): seq(a(n), n=0..44);  # Alois P. Heinz, Feb 18 2019 PROG (PARI) a(n)=ceil(sqrt(exp(n)))-ceil(sqrt(exp(n-1))); for(n=0, 50, print1(a(n)", ")) CROSSREFS Cf. A000045, A000290, A001113, A005181, A019774, A290506, A306604. Sequence in context: A218032 A229194 A304790 * A236212 A293865 A024322 Adjacent sequences:  A306483 A306484 A306485 * A306487 A306488 A306489 KEYWORD nonn AUTHOR Alexei Kourbatov, Feb 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 02:54 EDT 2019. Contains 328244 sequences. (Running on oeis4.)