login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005181
a(n) = ceiling(exp((n-1)/2)).
(Formerly M0693)
6
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 91, 149, 245, 404, 666, 1097, 1809, 2981, 4915, 8104, 13360, 22027, 36316, 59875, 98716, 162755, 268338, 442414, 729417, 1202605, 1982760, 3269018, 5389699, 8886111, 14650720, 24154953, 39824785, 65659970, 108254988, 178482301
OFFSET
0,3
COMMENTS
This sequence illustrates the second law of small numbers because it is a coincidence that its first ten terms are the same as the first ten Fibonacci numbers (A000045). - Alonso del Arte, Mar 18 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. Stewart, L'univers des nombres, pp. 27 Belin-Pour La Science, Paris 2000.
LINKS
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
Eric Weisstein's World of Mathematics, Fibonacci Number.
Eric Weisstein's World of Mathematics, Strong Law of Small Numbers.
FORMULA
Limit_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774. - Alois P. Heinz, Feb 19 2019
MAPLE
seq(round(ceil(exp((n-1)/2))), n=0..50); # Vladimir Pletser, Sep 15 2013
MATHEMATICA
Table[Ceiling[E^((n - 1)/2)], {n, 0, 39}] (* Alonso del Arte, Mar 18 2013 *)
PROG
(Python)
import math
for n in range(99):
print(str(int(math.ceil(math.e**((n-1)*0.5)))), end=', ')
# Alex Ratushnyak, Mar 18 2013
CROSSREFS
Sequence in context: A077371 A077372 A147659 * A177376 A120659 A042581
KEYWORD
nonn
EXTENSIONS
A few more terms from Alonso del Arte, Mar 18 2013
STATUS
approved