This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306485 Expansion of Product_{k>=1} 1/(1 - Catalan(k)*x^k), where Catalan = A000108. 1
 1, 1, 3, 8, 26, 78, 271, 874, 3096, 10537, 37884, 132282, 484369, 1723568, 6362479, 23042165, 85706354, 313629597, 1175860079, 4340963778, 16355209663, 60882536222, 230370880224, 862533878347, 3278709952956, 12337333292318, 47042968508785, 177882993705004, 680221802560835, 2581438941995517 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 FORMULA G.f.: exp(Sum_{k>=1} Sum_{j>=1} Catalan(j)^k*x^(j*k)/k). a(n) ~ c * 4^n / (sqrt(Pi)*n^(3/2)), where c = Product_{k>=1} 1/(1 - Catalan(k) / 4^k) = 2.868839868502632... - Vaclav Kotesovec, Feb 23 2019 MAPLE C:= proc(n) option remember; binomial(n+n, n)/(n+1) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,       b(n, i-1)+C(i)*b(n-i, min(n-i, i)))     end: a:= n-> b(n\$2): seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2019 MATHEMATICA nmax = 29; CoefficientList[Series[Product[1/(1 - CatalanNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 29; CoefficientList[Series[Exp[Sum[Sum[CatalanNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d CatalanNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}] CROSSREFS Cf. A000108, A088327, A179381. Sequence in context: A206141 A281972 A317852 * A148801 A131910 A205775 Adjacent sequences:  A306482 A306483 A306484 * A306486 A306487 A306488 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Feb 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 16:33 EDT 2019. Contains 327078 sequences. (Running on oeis4.)