login
A290506
Decimal expansion of 1 - 1/e^(1/2).
3
3, 9, 3, 4, 6, 9, 3, 4, 0, 2, 8, 7, 3, 6, 6, 5, 7, 6, 3, 9, 6, 2, 0, 0, 4, 6, 5, 0, 0, 8, 8, 1, 9, 5, 4, 6, 5, 5, 8, 0, 8, 1, 8, 6, 4, 5, 1, 2, 8, 1, 3, 0, 4, 4, 3, 1, 7, 1, 0, 7, 8, 4, 1, 2, 6, 4, 9, 4, 3, 4, 8, 0, 5, 8, 6, 2, 5, 1, 5, 7, 6, 0, 0, 1, 3, 5, 2, 3, 8, 8, 4, 9, 2, 0, 1, 0, 5, 4, 3, 9, 7, 3, 5, 7, 6
OFFSET
0,1
COMMENTS
The amount of time that a customer has to wait for his order at some restaurant is a random variable having an exponential distribution with a mean of x minutes. The probability that the waiting time will be x/2 minutes or less is 1 - 1/e^(1/2).
FORMULA
Equals Integral_{x = 0..1/2} exp(-x) dx.
From Amiram Eldar, Aug 24 2020: (Start)
Equals Sum_{k>=1) (-1)^(k+1)/(2^k * k!).
Equals 1 - A092605. (End)
EXAMPLE
0.3934693402873665763962004650088195465580818645128130443171078412649434...
MATHEMATICA
RealDigits[N[1 - 1/E^(1/2), 105]][[1]]
PROG
(Magma) SetDefaultRealField(RealField(105)); n:=1-Exp(-1)^(1/2); Reverse(Intseq(Floor(10^105*n)));
(PARI) 1-exp(-1)^(1/2)
CROSSREFS
Cf. A092605.
Sequence in context: A375503 A201416 A072560 * A303111 A299633 A074959
KEYWORD
nonn,cons
AUTHOR
STATUS
approved