login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306245
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} k^j * binomial(n-1,j) * A(j,k) for n > 0.
5
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 15, 1, 1, 1, 5, 43, 179, 52, 1, 1, 1, 6, 89, 1279, 3489, 203, 1, 1, 1, 7, 161, 5949, 108472, 127459, 877, 1, 1, 1, 8, 265, 20591, 1546225, 26888677, 8873137, 4140, 1
OFFSET
0,9
LINKS
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(k * x / (1 - x)) / (1 - x). - Seiichi Manyama, Jun 18 2022
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 17, 43, 89, 161, ...
1, 15, 179, 1279, 5949, 20591, ...
1, 52, 3489, 108472, 1546225, 12950796, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1,
add(k^j*binomial(n-1, j)*A(j, k), j=0..n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Jul 28 2019
MATHEMATICA
A[0, _] = 1;
A[n_, k_] := A[n, k] = Sum[k^j Binomial[n-1, j] A[j, k], {j, 0, n-1}];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 29 2020 *)
CROSSREFS
Columns k=0..4 give A000012, A000110, A126443, A355081, A355082.
Rows n=0+1, 2 give A000012, A000027(n+1).
Main diagonal gives A309401.
Cf. A309386.
Sequence in context: A124560 A368025 A290759 * A275043 A227061 A201949
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 28 2019
STATUS
approved