login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124560 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0, with R_0(y)=1/(1-y). 14
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 16, 1, 1, 1, 5, 22, 63, 66, 1, 1, 1, 6, 35, 158, 429, 348, 1, 1, 1, 7, 51, 317, 1455, 3716, 2321, 1, 1, 1, 8, 70, 556, 3634, 16918, 40272, 19437, 1, 1, 1, 9, 92, 891, 7581, 52199, 244644, 541655, 203554, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..65.

FORMULA

Let F_n(y) be the g.f. of row n in table A124550, then F_n(y) = R_n(y)^n and thus R_n(y) = Sum_{k>=0} y^k * F_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.

EXAMPLE

The g.f. of row n, R_n(y), simultaneously satisfies:

R_n(y) = 1 + y*R_{n}(y)^n + y^2*R_{2n}(y)^(2n) + y^3*R_{3n}(y)^(3n) +...

more explicitly,

R_0 = 1 + y + y^2 + y^3 +... = 1/(1-y),

R_1 = 1 + y*(R_1)^1 + y^2*(R_2)^2 + y^3*(R_3)^3 + y^4*(R_4)^4 +...,

R_2 = 1 + y*(R_2)^2 + y^2*(R_4)^4 + y^3*(R_6)^6 + y^4*(R_8)^8 +...,

R_3 = 1 + y*(R_3)^3 + y^2*(R_6)^6 + y^3*(R_9)^9 + y^4*(R_12)^12 +...,

R_4 = 1 + y*(R_4)^4 + y^2*(R_8)^8 + y^3*(R_12)^12 + y^4*(R_16)^16 +...,

etc., for all rows.

Table begins:

1,1,1,1,1,1,1,1,1,1,...

1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...

1,1,3,12,63,429,3716,40272,541655,9022405,186233087,4771577072,...

1,1,4,22,158,1455,16918,244644,4361883,95746603,2592416878,...

1,1,5,35,317,3634,52199,928608,20282765,543008771,17866390922,...

1,1,6,51,556,7581,128532,2689248,68880819,2155007000,82603481941,...

1,1,7,70,891,14036,272914,6525900,190604859,6781448755,...

1,1,8,92,1338,23864,521662,13975298,456468525,18121964864,...

1,1,9,117,1913,38055,921709,27263527,981599065,42880525630,...

1,1,10,145,2632,57724,1531900,49474783,1941904513,92344174075,...

1,1,11,176,3511,84111,2424288,84736940,3594121407,184465174294,...

1,1,12,210,4566,118581,3685430,138423924,6299505191,346530455866,...

1,1,13,247,5813,162624,5417683,217374894,10551425445,618507018238,...

1,1,14,287,7268,217855,7740500,330130230,17007128087,1057156741967,...

1,1,15,330,8947,286014,10791726,487184328,26523926691,1741018836674,...

1,1,16,376,10866,368966,14728894,701255202,40200085065,2776362938533,..

1,1,17,425,13041,468701,19730521,987570893,59420653233,4304220653087,..

PROG

(PARI) {A124550(n, k)=if(k==0, 1, if(n==0, 0, if(k==1, n, if(n<=k, Vec(( 1+x*Ser( vector(k, j, sum(i=0, j-1, A124550(n+i*n, j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1, j, A124550(j-1, k))), x, x/(1+x))/(1+x))), vector(n-k+1)) ), x, x/(1-x))/(1-x +x*O(x^(n))))[n]))))} /* Determined Elements from A124550: */ {T(n, k)=if(n==0|k==0, 1, Vec((Ser(vector(k+1, j, A124550(n, j-1)))+x*O(x^k))^(1/n))[k+1])}

CROSSREFS

Rows: A124551, A124562, A124563, A124564, A124565, A124566; diagonals: A124567, A124568, A124569; A124561 (antidiagonal sums); variants: A124550, A124460, A124530, A124540.

Sequence in context: A070914 A305962 A144150 * A290759 A275043 A227061

Adjacent sequences:  A124557 A124558 A124559 * A124561 A124562 A124563

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 23:02 EDT 2019. Contains 321343 sequences. (Running on oeis4.)