login
A309401
a(n) = A306245(n,n).
2
1, 1, 3, 43, 5949, 12950796, 586826390263, 669793946192984257, 22558227235537152753501561, 25741074696455818592335996518315259, 1124843928218943684789052411802502269971863691, 2100464404490451025972467064515428575200326254804659324780
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
add(k^j*binomial(n-1, j)*b(j, k), j=0..n-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..12); # Alois P. Heinz, Jul 28 2019
MATHEMATICA
b[0, _] = 1;
b[n_, k_] := b[n, k] = Sum[k^j Binomial[n-1, j] b[j, k], {j, 0, n-1}];
a[n_] := b[n, n];
a /@ Range[0, 12] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
PROG
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + k ** j * ncr(i - 1, j) * ary[j]}}
ary
end
def A309401(n)
(0..n).map{|i| A(i, i)}
end
p A309401(20)
CROSSREFS
Main diagonal of A306245.
Sequence in context: A351579 A201173 A290777 * A190637 A287959 A346200
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 28 2019
STATUS
approved