login
A126443
a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.
11
1, 1, 3, 17, 179, 3489, 127459, 8873137, 1195313043, 315321098561, 164239990789571, 169810102632595281, 349630019758589841523, 1436268949679165936016097, 11784559509424676876673518499, 193243076262167105764611875139569
OFFSET
0,3
COMMENTS
Generated by a generalization of a recurrence for the Bell numbers (A000110).
Starting with offset 1 = eigensequence of triangle A013609. - Gary W. Adamson, Sep 04 2009
LINKS
FORMULA
a(n) = Sum_{k=0..n*(n-1)/2} A126347(n,k)*2^k.
G.f. A(x) satisfies: A(x) = 1 + x*A(2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Sep 02 2019
a(n) ~ c * 2^(n*(n-1)/2), where c = A081845 = 4.7684620580627434482997985... - Vaclav Kotesovec, Sep 16 2019
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*a(k)*2^k))
CROSSREFS
Cf. A013609. - Gary W. Adamson, Sep 04 2009
Column k=2 of A306245.
Sequence in context: A263460 A053934 A159592 * A054976 A304863 A163886
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2007
STATUS
approved