login
A305212
a(n) = n - A305211(n).
1
0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 6, 0, 0, 0, 0, 0, 12, 8, 0, 0, 0, 0, 0, 0, 10, 16, 0, 0, 0, 0, 0, 12, 0, 0, 20, 0, 0, 0, 14, 0, 0, 0, 0, 24, 0, 16, 0, 0, 0, 0, 0, 0, 38, 0, 0, 0, 0, 0, 0, 20, 0, 32, 0, 0, 0, 0, 22, 0, 0, 0, 36, 0, 0
OFFSET
1,7
COMMENTS
Number of integers d from 0 to n-1 such that x^3 + y^3 == d (mod n) has no solutions in integers.
PROG
(Python) [n-len(set((pow(x, 3, n)+pow(y, 3, n))%n for x in range(n) for y in range(x+1))) for n in range(1, 51)]
(PARI) a(n) = my(v=[]); for (x=1, n, for (y=1, n, v = concat(v, Mod(x, n)^3 + Mod(y, n)^3))); n - #Set(v); \\ Michel Marcus, Jul 10 2018
CROSSREFS
Cf. A305211.
Sequence in context: A261162 A218862 A243199 * A104774 A087263 A099894
KEYWORD
nonn
AUTHOR
Jack Zhang, May 27 2018
EXTENSIONS
a(50)-a(83) from Jon E. Schoenfield, May 28 2018
STATUS
approved