login
A087263
a(n) is the least initial value of a 3x+1 trajectory in which n is the largest (peak) term or a(n) = 0 if n cannot be a peak value (i.e., when n = 2k+1, n = 4k+2, n = 16k+12, etc.).
1
1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 20, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 7, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 68, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 80, 0, 0, 0, 84, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0
OFFSET
1,2
MATHEMATICA
c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Max[Delete[FixedPointList[c, x], -1]] t=Table[fpl[w], {w, 1, 15000}]; Table[Min[Flatten[Position[t, j]]], {j, 1, 256}]
CROSSREFS
Cf. A025586.
Sequence in context: A243199 A305212 A104774 * A099894 A048298 A123565
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 11 2003
STATUS
approved