login
A104774
a(1) = 1, a(2) = 2, a(3) = 0, a(4) = 4, and for n > 4, if n is an even number, a(n) = a(n/2) - (1 if a(n/2) is not zero), otherwise if n is an odd semiprime p*q (with q >= p), then a(n) = p+q, otherwise 0.
3
1, 2, 0, 4, 0, 0, 0, 3, 6, 0, 0, 0, 0, 0, 8, 2, 0, 5, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 0, 7, 0, 1, 14, 0, 12, 4, 0, 0, 16, 0, 0, 9, 0, 0, 0, 0, 0, 0, 14, 9, 20, 0, 0, 0, 16, 0, 22, 0, 0, 6, 0, 0, 0, 0, 18, 13, 0, 0, 26, 11, 0, 3, 0, 0, 0, 0, 18, 15, 0, 0, 0, 0, 0, 8, 22, 0, 32, 0, 0, 0, 20, 0, 34, 0, 24
OFFSET
1,2
COMMENTS
The original name was: If n is even then (if n<=4 then n else a(n/2) + 0^a(n/2) - 1) else (if n=p*q is semiprime then p+q else 0^(n-1))).
FORMULA
a(A104772(n)) = n; a(A104773(n)) = A104772(n).
PROG
(PARI) A104774(n) = if(!(n%2), if(n<=4, n, my(u=A104774(n/2)); (u+!u-1)), if(2==bigomega(n), my(f=factor(n)[, 1]); if(1==omega(n), 2*f[1], f[1]+f[2]), !(n-1))); \\ Antti Karttunen, Mar 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 24 2005
EXTENSIONS
Name changed by Antti Karttunen, Apr 01 2021
STATUS
approved