login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304203
If n = Product (p_j^k_j) then a(n) = Product (p_j^prime(k_j)).
2
1, 4, 9, 8, 25, 36, 49, 32, 27, 100, 121, 72, 169, 196, 225, 128, 289, 108, 361, 200, 441, 484, 529, 288, 125, 676, 243, 392, 841, 900, 961, 2048, 1089, 1156, 1225, 216, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 675, 2116, 2209, 1152, 343, 500, 2601, 1352, 2809, 972, 3025
OFFSET
1,2
FORMULA
a(prime(i)^k) = prime(i)^prime(k).
a(A000040(k)) = A001248(k).
a(A001248(k)) = A030078(k).
a(A030078(k)) = A050997(k).
a(A002110(k)) = A061742(k).
Multiplicative with a(p^e) = p^prime(e). - M. F. Hasler, Nov 20 2018
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^prime(k)) = 1.80728269690724154161... . - Amiram Eldar, Jan 20 2024
EXAMPLE
a(12) = a(2^2*3^1) = 2^prime(2)*3^prime(1) = 2^3*3^2 = 72.
MAPLE
a:= n-> mul(i[1]^ithprime(i[2]), i=ifactors(n)[2]):
seq(a(n), n=1..55); # Alois P. Heinz, Jan 20 2021
MATHEMATICA
a[n_] := Times @@ (#[[1]]^Prime[#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 55}]
PROG
(PARI) a(n) = my(f=factor(n)); prod(k=1, #f~, f[k, 1]^prime(f[k, 2])); \\ Michel Marcus, May 09 2018
(PARI) apply( A304203(n)=factorback((n=factor(n))[, 1], apply(prime, n[, 2])), [1..50]) \\ M. F. Hasler, Nov 20 2018
CROSSREFS
Cf. A064988 (apply prime to p), A321874 (apply prime to both p & e).
Sequence in context: A354165 A073395 A064549 * A087687 A264090 A345283
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, May 09 2018
STATUS
approved