login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008477 If n = Product (p_j^k_j) then a(n) = Product (k_j^p_j). 22
1, 1, 1, 4, 1, 1, 1, 9, 8, 1, 1, 4, 1, 1, 1, 16, 1, 8, 1, 4, 1, 1, 1, 9, 32, 1, 27, 4, 1, 1, 1, 25, 1, 1, 1, 32, 1, 1, 1, 9, 1, 1, 1, 4, 8, 1, 1, 16, 128, 32, 1, 4, 1, 27, 1, 9, 1, 1, 1, 4, 1, 1, 8, 36, 1, 1, 1, 4, 1, 1, 1, 72, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

For any n, the sequence n, a(n), a(a(n)), a(a(a(n))), ... is eventually periodic with period <= 2 [Farrokhi]. - N. J. A. Sloane, Apr 25 2009

a(A005117(n)) = 1; a(A013929(n)) > 1; A010052(a(A122132(n))) = 1. - Reinhard Zumkeller, Feb 17 2012

From Bernard Schott, Mar 26 2021: (Start)

The study of some properties of this sequence was proposed in the 1st problem of Concours Général in 2012 in France (see links).

Terms are precisely the powerful numbers in A001694.

If m is a term, there is a term q such that a(q) = m.

a(a(n)) <= n (see examples). (End)

LINKS

M. F. Hasler, Table of n, a(n) for n = 1..10000

Annales Concours Général, Sujet Concours Général 2012 (in French, problems).

Annales Concours Général, Corrigé Concours Général 2012 (in French, solutions).

M. Farrokhi, The Prime Exponentiation of an Integer: Problem 11315, Amer. Math. Monthly, 116 (2009), 470. - from N. J. A. Sloane, Apr 25 2009

Index to sequences related to Olympiads and other Mathematical Competitions.

FORMULA

Multiplicative with a(p^e) = e^p. - David W. Wilson, Aug 01 2001

EXAMPLE

For n = 24 = 2^3*3^1, a(24) = 3^2*1^3 = 9, so a(9) = 2^3 = 8 and a(a(24)) = 8 < 24.

For n = 243 = 3^5, a(243) = 5^3 = 125, so a(125) = 3^5 = 243 and a(a(243)) = 243.

MAPLE

A008477 := proc(n) local e, j; e := ifactors(n)[2]:

mul (e[j][2]^e[j][1], j=1..nops(e)) end:

seq (A008477(n), n=1..60);

# Peter Luschny, Jan 17 2010

MATHEMATICA

Prepend[ Array[ Times @@ Map[ Power @@ RotateLeft[ #1, 1 ]&, FactorInteger[ # ] ]&, 100, 2 ], 1 ]

Table[Times@@(First[#]^Last[#]&/@Transpose[Reverse[ Transpose[ FactorInteger[ n]]]]), {n, 80}] (* Harvey P. Dale, Jul 22 2014 *)

PROG

(Haskell)

a008477 n = product $ zipWith (^) (a124010_row n) (a027748_row n)

-- Reinhard Zumkeller, Feb 17 2012

(PARI) A008477(n)=factorback(factor(n)*[0, 1; 1, 0])  \\ M. F. Hasler, May 20 2012

CROSSREFS

Cf. A001694, A027748, A124010.

Cf. A005117, A013929, A010052, A062307, A122132, A342551.

Cf. A008478 (fixed points).

Sequence in context: A057521 A084885 A112538 * A303278 A222639 A184729

Adjacent sequences:  A008474 A008475 A008476 * A008478 A008479 A008480

KEYWORD

nonn,mult

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 08:46 EDT 2021. Contains 348074 sequences. (Running on oeis4.)