OFFSET
1,2
COMMENTS
T(n,k) are the coefficients in an identity due to Faulhaber: Sum_{j=0..n} j^(2*m-1) = Sum_{k=1..m} T(m,k) binomial(n+k, 2*k). See the Knuth reference, page 10.
More explicitly, Faulhaber's theorem asserts that, given integers n >= 0, m >= 1 and odd, Sum_{k=1..n} k^m = Sum_{k=1..(m+1)/2} C(n+k,n-k)*[(1/k)*Sum_{j=0..k-1} (-1)^j*C(2*k,j)*(k-j)^(m+1)]. The coefficients T(m, k) are indicated by square brackets. Sums similar to this inner part are A304330, A304334, A304336; however, these triangles are (0,0)-based and lead to equivalent but slightly more systematic representations. - Peter Luschny, May 12 2018
REFERENCES
John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
LINKS
Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992.
Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See pp. 3, 6.
FORMULA
T(n, k) = (2*(n-k)+1)!*A008957(n, k), n >= 1, 1 <= k <= n.
T(n, k) = (1/m)*Sum_{j=0..m} (-1)^j*binomial(2*m,j)*(m-j)^(2*n) where m = n-k+1. - Peter Luschny, May 09 2018
EXAMPLE
The triangle begins (see the Knuth reference p. 10):
1;
6, 1;
120, 30, 1;
5040, 1680, 126, 1;
362880, 151200, 17640, 510, 1;
39916800, 19958400, 3160080, 168960, 2046, 1;
6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;
.
Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):
F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).
Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).
If n = 43 the common value is 1600620805036.
MAPLE
T := proc(n, k) local m; m := n-k;
2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:
seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
MATHEMATICA
(* After Peter Luschny's above formula. *)
T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
PROG
(Sage)
for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
CROSSREFS
Row sums give A100868.
KEYWORD
nonn,tabl
AUTHOR
Kolosov Petro, May 08 2018
EXTENSIONS
New name by Peter Luschny, May 10 2018
STATUS
approved