login
A365908
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+2) / (3*k+2)! ).
2
1, 0, 1, 0, 6, 1, 90, 42, 2521, 2268, 113742, 166321, 7543206, 16218930, 691242553, 2044833336, 83708046246, 324830941345, 12951273345282, 63596620804122, 2493395633726425, 15062005915534116, 584749646165678622, 4247497704703187089, 164155618660742879022
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/3)} binomial(n,3*k+2) * a(n-3*k-2).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+2)/(3*k+2)!))))
CROSSREFS
Cf. A365338.
Sequence in context: A300512 A343622 A318107 * A331557 A352058 A303675
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved