This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295300 Filter combining prime signature of n (A046523), A003557(n) and A048250(n); restricted growth sequence transform of A291752. 9
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Antti Karttunen, Table of n, a(n) for n = 1..100000 PROG (PARI) allocatemem(2^30); rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A003557(n) = n/factorback(factor(n)[, 1]); \\ This function from Charles R Greathouse IV, Nov 17 2014 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011 A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d))); A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)); Anot_submitted(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)); write_to_bfile(1, rgs_transform(vector(100000, n, Anot_submitted(n))), "b295300.txt"); CROSSREFS Cf. A003557, A046523, A048250, A101296, A286360, A291750, A291751, A291752, A291757, A291758. Sequence in context: A295880 A296090 A323372 * A139179 A262437 A130909 Adjacent sequences:  A295297 A295298 A295299 * A295301 A295302 A295303 KEYWORD nonn AUTHOR Antti Karttunen, Nov 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 22:51 EST 2019. Contains 320362 sequences. (Running on oeis4.)