This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130909 Simple periodic sequence (n mod 16). 6
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The value of the rightmost digit in the base-16 representation of n. Also, the equivalent value of the two rightmost digits in the base-4 representation of n. Also, the equivalent value of the four rightmost digits in the base-2 representation of n. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1). FORMULA a(n)=n mod 16 =n-16*floor(n/16). - G.f.: g(x)=(sum{1<=k<16, k*x^k})/(1-x^16). Also: g(x)=x(15x^16-16x^15+1)/((1-x^16)(1-x)^2). a(n)=A000035(n)+2*A010877(A004526(n). a(n)=A010873(n)+4*A010873(A002265(n)). a(n)=A010877(n)+8*A000035(floor(n/8)). a(n) = (1/2)*(15 - ( - 1)^n - 2*( - 1)^(b/4) - 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8) - 8*( - 1)^((b - 6 + ( - 1)^n + 2*( - 1)^(b/4) + 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8))/16)) where b = 2n - 1 + ( - 1)^n. - Hieronymus Fischer, Jun 14 2007 a(n)=n mod 2+2*(floor(n/2)mod 2)+4*(floor(n/4)mod 2)+8*(floor(n/8)mod 2). - Hieronymus Fischer, Jun 14 2007 a(n)=(1/2)*(15-(-1)^n-2*(-1)^floor(n/2)-4*(-1)^floor(n/4)-8*(-1)^floor(n/= 8)). - Hieronymus Fischer, Jun 14 2007 Complex representation: a(n)=(1/16)*(1-r^n)*sum{1<=k<16, k*product{1<=m<16,m<>k, (1-r^(n-m))}} where r=exp(pi/8*i)=(sqrt(2+sqrt(2))+i*sqrt(2-sqrt(2)))/2 and i=sqrt(-1). - Hieronymus Fischer, Jun 14 2007 Trigonometric representation: a(n)=2^22*(sin(n*pi/16))^2*sum{1<=k<16, k*product{1<=m<16,m<>k, (sin((n-m)*pi/16))^2}}. - Hieronymus Fischer, Jun 14 2007 a(n)=(1/2)*(15-(-1)^p(0,n)-2*(-1)^p(1,n)-4*(-1)^p(2,n)-8*(-1)^p(3,n)) where p(k,n) is defined recursively by p(0,n)=n, p(k,n)=1/4*(2*p(k-1,n)-1+(-1)^p(k-1,n)). - Hieronymus Fischer, Jun 14 2007 PROG (PARI) a(n)=n%16 \\ Charles R Greathouse IV, Jul 13 2016 CROSSREFS Cf. partial sums A130910. Other related sequences A010872, A010873, A130481, A130482, A130483, A130486. See A010877 for a general formula in terms of powers of -1 (for period 2^k). Sequence in context: A295300 A139179 A262437 * A275993 A160700 A002377 Adjacent sequences:  A130906 A130907 A130908 * A130910 A130911 A130912 KEYWORD nonn,easy AUTHOR Hieronymus Fischer, Jun 11 2007, Jun 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 02:33 EST 2019. Contains 320200 sequences. (Running on oeis4.)