login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101296 n has the a(n)-th distinct prime signature. 72
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Antti Karttunen, May 12 2017: (Start)

Restricted growth sequence of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have:

   For all i, j: a(i) = a(j) => A000005(i) = A000005(j).

   For all i, j: a(i) = a(j) => A008683(i) = A008683(j).

   For all i, j: a(i) = a(j) => A286605(i) = A286605(j).

So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n.

(End)

LINKS

Michel Marcus (terms 1..10000) & Antti Karttunen, Table of n, a(n) for n = 1..100000

FORMULA

A025487(a(n)) = A046523(n).

Indices of records give A025487. - Michel Marcus, Nov 16 2015

From David A. Corneth, May 12 2017: (Start)

a(A000012(n)) = 1 (sig.: ()).

a(A000040(n)) = 2 (sig.: (1)).

a(A001248(n)) = 3 (sig.: (2)).

a(A006881(n)) = 4 (sig.: (1,1)).

a(A030078(n)) = 5 (sig.: (3)).

a(A054753(n)) = 6 (sig.: (1,2)).

a(A030514(n)) = 7 (sig.: (4)).

a(A065036(n)) = 8 (sig.: (1,3)).

a(A007304(n)) = 9 (sig.: (1,1,1)).

a(A050997(n)) = 10 (sig.: (5)).

a(A085986(n)) = 11 (sig.: (2,2)).

a(A178739(n)) = 12 (sig.: (1,4)).

a(A085987(n)) = 13 (sig.: (1,1,2)).

a(A030516(n)) = 14 (sig.: (6)).

a(A143610(n)) = 15 (sig.: (2,3)).

a(A178740(n)) = 16 (sig.: (1,5)).

a(A189975(n)) = 17 (sig.: (1,1,3)).

a(A092759(n)) = 18 (sig.: (7)).

a(A189988(n)) = 19 (sig.: (2,4)).

a(A179643(n)) = 20 (sig.: (1,2,2)).

a(A189987(n)) = 21 (sig.: (1,6)).

a(A046386(n)) = 22 (sig.: (1,1,1,1)).

a(A162142(n)) = 23 (sig.: (2,2,2)).

a(A179644(n)) = 24 (sig.: (1,1,4)).

a(A179645(n)) = 25 (sig.: (8)).

a(A179646(n)) = 26 (sig.: (2,5)).

a(A163569(n)) = 27 (sig.: (1,2,3)).

a(A179664(n)) = 28 (sig.: (1,7)).

a(A189982(n)) = 29 (sig.: (1,1,1,2)).

a(A179666(n)) = 30 (sig.: (3,4)).

a(A179667(n)) = 31 (sig.: (1,1,5)).

a(A179665(n)) = 32 (sig.: (9).

a(A189990(n)) = 33 (sig.: (2,6)).

a(A179669(n)) = 34 (sig.: (1,2,4)).

a(A179668(n)) = 35 (sig.: (1,8)).

a(A179670(n)) = 36 (sig.: (1,1,1,3)).

a(A179671(n)) = 37 (sig.: (3,5)).

a(A162143(n)) = 38 (sig.: (2,2,2)).

a(A179672(n)) = 39 (sig.: (1,1,6)).

a(A030629(n)) = 40 (sig.: (10)).

a(A179688(n)) = 41 (sig.: (1,3,3)).

a(A179689(n)) = 42 (sig.: (2,7)).

a(A179690(n)) = 43 (sig.: (1,1,2,2)).

a(A189991(n)) = 44 (sig.: (4,4)).

a(A179691(n)) = 45 (sig.: (1,2,5)).

a(A179692(n)) = 46 (sig.: (1,9)).

a(A179693(n)) = 47 (sig.: (1,1,1,4)).

a(A179694(n)) = 48 (sig.: (3,6)).

a(A179695(n)) = 49 (sig.: (2,2,3)).

a(A179696(n)) = 50 (sig.: (1,1,7)).

(End)

EXAMPLE

From David A. Corneth, May 12 2017: (Start)

1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.

2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.

3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.

4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 1. (End)

From Antti Karttunen, May 12 2017: (Start)

Construction of rectricted growth sequences: In this case we start with a(1)=1 for A046523(1)=1, and then after, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).

For n=2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.

For n=3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.

For n=4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.

For n=5, A046523(5) = 2, which was for the first time encountered at n=2, thus we set a(5) = 2.

For n=6, A046523(6) = 6, not encountered before (first semiprime pq, with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.

For n=8, A046523(8) = 8, not encountered before (first cube of prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.

For n=9, A046523(9) = 4, which was for the first time encountered at n=4, thus a(9) = 3.

(End)

From David A. Corneth, May 12 2017 (Start):

(Rough) description of an algorithm of computing the sequence:

Suppose we want to compute a(n) for n in [1..20].

We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:

[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]

We check the prime signature of m = 4 and see that it's prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:

[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]

Similarily, after m = 6, we get

[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:

[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:

[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:

[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:

[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)

MAPLE

A101296 := proc(n)

    local a046523, a;

    a046523 := A046523(n) ;

    for a from 1 do

        if A025487(a) = a046523 then

            return a;

        elif A025487(a) > a046523 then

            return -1 ;

        end if;

    end do:

end proc: # R. J. Mathar, May 26 2017

MATHEMATICA

With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)

PROG

(PARI) find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)); ); }

add(vps, ps) = {nvps = vector(#vps+1); for (k=1, #vps, nvps[k] = vps[k]); nvps[#vps+1] = ps; nvps; }

lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[, 2]); ips = find(ps, vps); if (! ips, vps = add(vps, ps); ips = #vps); print1(ips, ", "); ); } \\ Michel Marcus, Nov 15 2015

(PARI)

rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences, invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences, invec[i], i); outvec[i] = u; u++ )); outvec; };

write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }

A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011

write_to_bfile(1, rgs_transform(vector(100000, n, A046523(n))), "b101296.txt");

\\ Second PARI-program from Antti Karttunen, May 12 2017

CROSSREFS

Cf. A025487, A046523, A064839 (ordinal transform of this sequence) and arrays A095904, A179216.

Cf. A000005, A008683.

Cf. also A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for similarly constructed sequences.

Sequence in context: A300827 A144371 A305899 * A305898 A181819 A302046

Adjacent sequences:  A101293 A101294 A101295 * A101297 A101298 A101299

KEYWORD

easy,nonn

AUTHOR

David Wasserman, Dec 21 2004

EXTENSIONS

Data section extended to 120 terms by Antti Karttunen, May 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 09:34 EST 2018. Contains 318160 sequences. (Running on oeis4.)